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Abstract: This study established a random forest regression model (RFRM) using terrain factors,
climatic and river factors, distances to the capitals of provinces, prefectures (Fu, in Chinese Pinyin),
and counties as independent variables to predict the population density. Then, using the RFRM,
we explicitly reconstructed the spatial distribution of the population density of Gansu Province,
China, in 1820 and 2000, at a resolution of 10 by 10 km. By comparing the explicit reconstruction
with census data at the township level from 2000, we found that the RFRM-based approach mostly
reproduced the spatial variability in the population density, with a determination coefficient (R2) of
0.82, a positive reduction of error (RE, 0.72) and a coefficient of efficiency (CE) of 0.65. The RFRM-based
reconstructions show that the population of Gansu Province in 1820 was mostly distributed in the
Lanzhou, Gongchang, Pingliang, Qinzhou, Qingyang, and Ningxia prefecture. The macro-spatial
pattern of the population density in 2000 kept approximately similar with that in 1820. However,
fine differences could be found. The 79.92% of the population growth of Gansu Province from 1820
to 2000 occurred in areas lower than 2500 m. As a result, the population weighting in the areas
above 2500 m was ~9% in 1820 while it was greater than 14% in 2000. Moreover, in comparison to
1820, the population density intensified in Lanzhou, Xining, Yinchuan, Baiyin, Linxia, and Tianshui,
while it weakened in Gongchang, Qingyang, Ganzhou, and Suzhou.

Keywords: historical period; random forest regression model; population density; prediction;
Gansu Province

1. Introduction

The spatial distribution of populations is one of the hot topics in the field of demography. With the
introduction of geography and statistics, the spatial distribution of populations has gradually become a
complex, multidisciplinary research problem [1–3]. However, most of the demographic datasets were
compiled based on administrative districts such as counties and townships. As a consequence, it has
been impossible to depict the spatial variability in the population density within the administrative
areas. This lack of knowledge leads to some limitations on many relevant issues, such as interactions
of humans and the environment, because many natural environmental factors have explicit spatial
variability [4]. The estimated population distribution can provide more spatial detailed information
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of population with regular grid cells and can be used to reveal the pattern of population growth
and migration [5]. Furthermore, the gridded historical population datasets are widely used in the
historical reconstruction of land use and land cover change (LUCC), such as the conversion from
woodland to cropland, which is conducive to the quantitative estimations of carbon emissions in
historical periods [6–8]. Therefore, there has been a large demand to determine the explicit spatial
distribution of population.

To date, there are a large number of global- and national-scale gridded population datasets
including the Gridded Population of the World (GPW), Global Rural-Urban Mapping Project (GRUMP),
WorldPop datasets, and China 1 km Gridded Population (CnPop) datasets [9]. These datasets played
critical roles in resource allocation and management [10], climate change research [11,12], disease risk
assessment [13], and other fields. These existing studies mostly focused on modern times; however,
there are a few population gridded datasets for historical periods. This may be partly explained by the
lack of documented historical census data.

Overall, the modelling approaches of most population gridded datasets can be divided into
two categories: a spatial interpolation (SITP) approach and multi-factor integration (MFI) approach.
The SITP approach is based on geo-statistics. Under the SITP approach, population density is
represented as a function of location, i.e., the X-coordinate and Y-coordinate [14]. To quantify the
relationship between population density and locations, many models such as the inverse distance
weighted model, kriging model, spline model, and natural neighbor model have been applied [15].
Using observations, the models are calibrated; then, they are used to calculate the population density
of the sites without observations. Hence, the SITP approach assumes that the positions (distance) of
the sampling points are dominant factors determining the population distribution but do not explicitly
represent the impacts of environmental factors on the population distribution. SITP is usually used to
transform irregular population density sampling points into rasters in situations lacking environmental
factors. However, due to the limitations of the SITP approach, the population near the sampling points
is usually overestimated, which is inconsistent with the actual population distribution.

The MFI approach is usually based on a multiple variable regression. Using the MFI approach,
the population density is represented as a function of multiple environmental factors including altitude,
slope, river, night-time light strength, land cover/use proportions, and satellite-based vegetation
indexes [16–19]. Typically, a linear multiple variable regression is applied to quantify the relations
between the population density and environmental factors. The regression model is calibrated with the
observations; then, it is used to estimate the population density of sites with environmental variables
but missing population observations. In comparison with the abovementioned SITP approach, the MFI
approach considers the environmental factors closely related to population density, rather than only
location and distance. Therefore, the MFI approach has been used extensively to construct the explicit
spatial distribution of population density in recent decades [20,21]. However, the MFI approach usually
requires a large number of independent variables, most of which are unavailable for the historical
periods. Moreover, a traditional linear regression cannot describe the complex relationship between
the population density and environmental factors. Therefore, the existing MFI approach is rarely
applied to reconstruct the explicit spatial distribution of population density for historical periods.

Recently, intelligent algorithms were applied to establish the relationship between populations
and environmental factors and simulate the population distribution in grid cells [22]. The most widely
used intelligent algorithms for population spatialization is the random forest regression model (RFRM).
The RFRM is an integrated learning method based on an ensemble of a large set of decision trees [23].
Some studies have shown that the RFRM can explain the nonlinear relationship between independent
variables and dependent variables better than a conventional regression model [24–26]. It is noted
that the existing study with RFRM used a large number of environmental factors as the independent
variables. However, there are differences in the environmental factors between the historical period and
present day. For example, the cities are densely populated areas from ancient times to now, after the
industrial revolution, the cities had more attractions for the population than in its ancient period.
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Some studies showed that historical population distribution was partly dependent on the political
situation and climate change [27,28]. In addition, environmental factors such as land use proportions
and night-time light intensity are unavailable for the historical period. Thus, it still remains unclear if
the RFRM could be applied to modelling population distribution with very limited environmental
factors for the historical period.

China has a long history of recording census data, and the earliest census data can be traced back
to 2 AD. However, all of these data were based on censuses conducted in political units, and as a
result, the explicit spatial distribution of the population remains unclear. Currently, only few studies
have attempted to reconstruct the explicit spatial distribution of populations in historical periods of
China. For instance, Wang et al. [29] simulated the population distribution of China in the Western
Han Dynasty (202 BC–8 AD) with the SITP approach. Therefore, the spatially explicit distributions of
the populations in historical period in China needed to be reconstructed.

In this paper, the RFRM was used to model population density with few available environmental
factors in grid cells with a size of 10 by 10 km, and Gansu Province, China, in 1820 and 2000 was used
as the case study.

2. Materials and Methods

2.1. Study Area

The study area was Gansu Province, China, in 1820, during the Qing Dynasty. The area of Gansu
Province was slightly larger in 1820 than it is at present. It not only included present-day Gansu
Province but also present-day Ningxia and a small portion of Qing Hai. There were 13 prefectural
units (Fu) including Lanzhou, Pingliang, Gongchang, Xining, Ningxia, etc. (Figure 1). The region
is located in the junction of the Loess Plateau, the Qinghai-Tibet Plateau, and the Inner Mongolia
Plateau. The terrain of the area is high in the west and south and low in the east and north. It is
dominated by a temperate monsoon climate, which is characterized by cold and dry winters and warm
and moist summers.
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Figure 1. Map of Gansu Province in year 1820 (the bottom-left insert shows the location of the study
area in China).

Gansu Province is the key area of the ancient Silk Road. With the development of commerce and
trade, many cities (i.e., Lanzhou, Liangzhou, Ganzhou, and Dunhuang) were regarded as transportation
hubs in the ancient period. The development of the cities further led to the uneven distribution of the
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population in this area. Thus, we need to reconstruct the population distribution in Gansu Province,
and it may be of great significance to study human–environment interactions and the evolution of
civilization [30].

2.2. Environment Factors and Data Resources

Existing studies show that population density is determined by many factors [31,32]. These factors
are essentially classified into two categories: natural factors and human factors. Based on existing
studies together with the availability of data, this study selected natural factors consisting of terrain
factors, climate and river factors, and human factors (referring to the distance to the nearest city).

In detail, the terrain factors included altitude above sea level, slope, and relief amplitude. It has
been reported that most of the population lived in areas with a slope of less than 15 degrees, and more
than 85% of the population lived in areas with a relief amplitude of less than 500 m in China [33,34].
The climate and river factors included moisture and the distance to the nearest water bodies. Climate
moisture and distance to water bodies represent the availability of water resources, and moisture
represents the accommodations provided by the environment. Since ancient times, people have
generally lived near water, particularly in the arid areas, such as Northwest China.

For the distance to the nearest city, this study used three indexes: the distance to the nearest
county, the distance to the nearest prefectural capital, and the distance to the nearest provincial capital.
A city is the settlement where people live together and carry out economic, political, and cultural
activities, which is the most direct representation of a population aggregation [35].

The data sources for the abovementioned factors used in this paper are as follows:
The terrain factors, (i.e., altitude above sea level, slope, and relief amplitude) were calculated from

an ASTER GDEM, which was provided by the National Aeronautics and Space Administration (NASA).
The ASTER GDEM was a digital elevation model in Geo-TIFF format and had a spatial resolution of
30 by 30 m. The relief amplitude is quantified as the index of the topographic morphology [36]. In this
paper, it was calculated as the range of the maximum and the minimum elevations within a domain of
5 by 5 km.

The river data for 1820 was derived from the China Historical Geographic Information System
(http://www.people.fas.harvard.edu/~chgis/). The river data for 2000 and climate moisture index were
derived from the Resources and Environmental Scientific Data Center, Chinese Academy of Sciences
(http://www.resdc.cn/). The climatic moisture index is the ratio of the annual average water input,
quantified by precipitation, and output, quantified as the sum of evaporation and runoff. All these
data were collected from 1915 meteorological stations throughout China [37].

The location of cities in Gansu Province in the Qing Dynasty was derived from the China Historical
Geographic Information System. The administrative boundary and location of the city in 2000 was
derived from the National Earth System Science Data Sharing Infrastructure, National Science and
Technology Infrastructure of China (http://www.geodata.cn).

Additionally, the census data for 1820 was provided by the Center for Historical Geographical
Studies of Fudan University. Based on the Population History of China (Vol. 5, Qing Dynasty
Period) [38], the demographic data for 1820 were prepared for each prefecture unit [39]. The census
data for Gansu Province in 2000 were provided by the Department of Population Social Science and
Technology Statistics, National Bureau of Statistics of China [40].

2.3. Method

2.3.1. Random Forest Regression Model

The random forest regression model (RFRM) is a machine learning algorithm based on the
combination of classification and regression trees [41]. The model uses a bootstrap method to randomly
extract training samples from the original dataset and generates a large set of regression trees. For the
regression process, the prediction results were calculated as the average value of the regression

http://www.people.fas.harvard.edu/~chgis/
http://www.resdc.cn/
http://www.geodata.cn
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trees’ results [42]. Due to the use of the bootstrap method, one-third of the sample data are not
involved in the construction of the model, approximately. These samples constitute the out-of-bag
data. The out-of-bag data can be used to verify the accuracy of the RFRM and rank the importance
of the variables. In comparison to the MFI, the random forest regression algorithm can well avoid
the situation of variable collinearity, which often occurs in population modeling. Compared with
other intelligent algorithms such as support vector machines (SVM) and artificial neural networks
(ANN), the RFRM is computationally lighter and shows high accuracy in population prediction.
More importantly, the RFRM can monitor the importance of each environmental factor by means of the
variable importance measures, which is of vital importance to quantitatively assess the influences of
environmental factors on population distribution [43,44].

2.3.2. Calibration and Verification of RFRM

In the process of RFRM calibration, population density was treated as a dependent variable and the
abovementioned environmental factors were treated as independent variables. In practice, the natural
logarithm of the population density, rather than the original population density, was used to exclude
the impacts of a skewed distribution in the original population density. In the process of calibration,
there were a total of 1591 towns, i.e., samples, for Gansu Province in 2000. The environmental factors
and the natural logarithm of the population density of each town were aggregated to form the original
dataset, then they were used to fit the RFRM. Figure 2 shows that most of the environmental factors
had skewed distributions. The RFRM can rank the importance of variables [45]. Figure 3 shows
the importance of environmental factors to the population distribution of Gansu Province in 2000.
It illustrated that the RFRM’s performance was primarily sensitive to the distance to the nearest county
and the altitude. The fitting procedure of the RFRM can be list as follows:

1. The training subsets were randomly extracted from the original dataset with replacement by
using the bootstrap method, in which sizes were equal to the original dataset.

2. When constructing the regression trees, the optimal split at each node was chosen from all the
environmental factors or a random subset of them according to the lowest Gini Impurity Index.
It can be calculated as Equation (1).

IG
(
tX(xi)

)
= 1−

m∑
j=1

f
(
tX(xi), j

)2
(1)

where IG donates the Gini Impurity Index, f(tx(xi), j) donates the proportion of samples with the
value xi belonging to leave j as node t [46].

3. Each regression tree grew recursively from top to bottom without pruning until a specified
termination condition was reached [47].

4. The final prediction result of the RFRM was determined by averaging the prediction results of all
the individual decision trees.

There were two critical parameters in the RFRM. They are the n_estimators and the max_features,
which determine the size and shape of the regression trees, respectively. In detail, the n_estimators
controlled the number of regression trees and max_features determined the number of input variables
to consider when the nodes of the regression trees looked for the best split. Tan et al. [48] used the
out-of-bag data and the accuracy of RFRM to optimize two parameters. In this study, n_estimators and
the max_features were also optimized in this way. Figure 4 showed the accuracy of RFRM with different
parameter values. We can find that the accuracy of RFRM increases firstly and decreases along with
the increase of max_features. So, in this study, the 600 and 3 were applied for the n_estimators and
max_features, respectively.
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To evaluate the performances of RFRM, the leave-one-out cross-validation method was applied [49].
In addition to the determination coefficients (R2), the relative error (E) (Equation (2)), the reduction of
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error (RE) (Equation (3)) and the coefficient of efficiency (CE) (Equation (4)) were used to evaluate the
reliability and stability of RFRM. RE and CE were sensitive indicators ranging from negative infinity to
1. When they are greater than zero, the model is considered to be reliable [50].

E =
poppre

i − popobs
i

popobs
i

× 100% (2)

RE = 1−

∑n
i=1

(
poppre

i − popobs
i

)2

∑n
i=1

(
popobs

i

)2 (3)

CE = 1−

∑n
i=1

(
popobs

i − poppre
i

)2

∑n
i=1

(
popobs

i − popobs
i

)2 (4)

where POPi
pre and POPi

obs denote the predicted and observed populations of town i, respectively,
and n is the total number of towns in Gansu Province in 2000.

2.3.3. Application of RFRM

For 2000, using RFRM, which was driven by simultaneous environmental factors in grid cells
with a size of 10 by 10 km, the population density for each grid cell was predicted. For 1820, since the
locations of cities were different from those in 2000, the distances to the nearest cities for each grid cell
were recalculated on the basis of the city distribution in 1820. Then, the RFRM was driven by human
factors and natural environmental factors, which were assumed to be approximately the same as those
in 2000, and predicted the population density for each grid cell.

It is noted that the total population based on the predicted population density were different
from the census data at the prefectural level and provincial level because of the prediction errors.
More importantly, there was a much larger difference for 1820 than for 2000 due to the different census
data used for each period. Since census data at the prefectural level are available for both 2000 and 1820,
we readjusted the predicted population density for each grid cell within the prefecture by considering
the ratio of the predicted population and census data. The equation can be expressed as follows:

P′i j = Pi j ×
Si∑n

j=1 Di jWi j
(5)

where Pij and P’ij denote the predicted population density and readjusted population density (persons
per km2) for grid cell j within prefectural unit i, respectively, Si denotes the census data (persons) for
prefectural unit i, Dij denotes the land area (km2) of grid cell j within prefectural unit i, and Wij donates
the population distribution weight of grid cell j within prefectural unit i.

Finally, for the grid cells shared by more than one prefectural unit, the population was readjusted
again by considering the land area fraction occupied by each prefectural unit (Equation (6)).

P′′j =

∑n
i=1 P′i jDi j

D j
(6)

where P′′j is the readjusted population density (persons per km2) for the grid cell j, which is shared by
more than one prefectural unit; P′i j denotes the population density (persons per km2), derived from

Equation (4), for the grid cell j within prefectural unit i, Dij denotes the land area (km2) of grid cell j
occupied by prefectural unit i, and Dj denotes the total land area (km2) of grid cell j.



Sustainability 2020, 12, 1231 8 of 16

3. Results

3.1. Evaluation of Model Performance

The RFRM predicted the natural logarithm of the population density. To highlight the performance
of RFRM through comparing directly with the census data, the prediction with natural logarithm were
converted to population density. Figure 5 shows that there was a significantly positive correlation
(R2 = 0.82) between the predicted population density and census data at the township level for 2000.
This suggests that the RFRM driven by the abovementioned environmental factors was largely able to
reproduce the spatial variability in the population distribution at the township level within Gansu
Province. Nevertheless, it was found that errors exist and that the positive and negative errors always
occurred in towns with low population density and high population density, respectively. Figure 6a
confirms that the errors occur almost randomly and that the distributions of positive and negative
errors were approximately symmetric with each other. In total, 81.58% of the towns had a relative error
less than 50%, and only 8.55% of the towns had a relative error higher than 80%. Figure 6b shows that
the positive and negative errors were evenly distributed in the large towns and small towns within
Gansu Province, while the negative errors mainly occurred in the border towns of Gansu Province.
Due to the complex natural and human factors of the border towns, the ability of the RFRM to predict
the population density in those areas was weak. Another explanation may be the error of census data.
Due to population mobility, the census coverage was usually higher in city and urban areas and lower
in the rural areas, especially in the mountainous areas and remote districts. the actual population may
be overestimated in the urban areas like cities and underestimated in the rural areas. Thus, the errors
in those areas were relatively large. All of these findings, together with the positive reduction of error
(RE = 0.72) and the coefficient of efficiency (CE = 0.65), suggest that the model is able to reproduce the
spatial variability in population density and is likely stable.Sustainability 2019, 11, x FOR PEER REVIEW 9 of 17 
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3.2. Modeling the Population Density in the 2000

Figure 7 shows the explicit population density variability in 10 by 10 km grid cells within the Gansu
Province in 2000. We found that there was a high density of the population in the southeastern portion
of Gansu Province and a low density of the population in the northwestern partition of the Tibetan
Plateau. In central Gansu Province, the high population density mainly occurred in Lanzhou, Baiyin,
Linxia, and Tianshui. The population density of the Lanzhou city reached 3986 persons per km2. Due to
the restriction of the Qilian Mountains, the population in the Hexi corridor was zonal distribution
and exhibited an extension from southeast to the northwest. To the northeast, i.e., the Ningxia Plain,
the high population density mainly occurred in the urban areas of cities and surrounding areas such as
Yinchuan, Wuzhong, and Shizuishan. To the southwest, i.e., the northeastern portion of the Tibetan
Plateau, the highest population density occurred in Xining city, with a population density of more than
1500 persons per km2.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 17 
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Furthermore, to evaluate the performance of RFRM in the 10- by 10-km grid cells, the RFRM
predictions at the grid cell level were compared to the 2000 census at township level. The predictions
in the grid cells were aggregated into data at the township scale to compare with the township level
census. As shown in Figure 8, there are also significantly positive correlations, with determination
coefficients of 0.49. It is possible that the RFRM grid cell-based predictions may perform well at
predicting the spatial variability in population density within Gansu Province in 2000. However,
there are errors, as shown by the root mean square error (RMSE) of 121.9 persons per km2. The errors
are likely random and have an approximately normal distribution. Both positive errors and negative
errors exist, and moreover, there is a high frequency of small errors and low frequency of large errors.
Positive errors mostly occurred in the areas with low population density, while negative errors mostly
occurred in the areas with high population density. This finding suggests that grid cell-based RFRM
predictions could not reproduce the areas of relatively low and high density of the population well.
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3.3. Modeling the Population Density in the 1820

Figure 9 shows the RFRM grid cell-based predictions of population density with a spatial resolution
of 10 by 10 km in Gansu Province in 1820. The overall spatial pattern of the population density in 1820
was approximately the same as that in 2000. There was a high population density in the southeastern
region and a low population density in the northwestern region. However, the population density was
quite different from that in 2000 in some regions. The population in 1820 was mostly distributed in
the central and eastern portions of Gansu, the Ningxia Plain, the Hexi Corridor, and the northeastern
Tibetan Plateau. In the central and eastern parts of Gansu, a higher population density existed mainly
in Lanzhou, Gongchang, Pinglian, and Qingyang. For instance, in Lanzhou, the population density
exceeded 1700 persons per km2. In the Hexi Corridor, a high population density was mainly found
in the Suzhou, Ganzhou, and Liangzhou city, with a population density of more than 100 persons
per km2. Moreover, the population in the Ningxia plain and northeastern Tibetan Plateau was densely
distributed in Ningxia and Xining city, respectively. The population density in Ningxia reached more
than 200 persons per km2.

Figure 10 shows the differences in the population density of Gansu Province between 1820 and
2000. In comparison to 1820, the population in 2000 was denser in some areas while it was sparser
in other areas. The intensified population density mainly occurred in Lanzhou, Xining, Ningxia,
Qinzhou, and Jiezhou. With the increasing population aggregations in the provincial capital cities,
the population in some grid cells of Lanzhou, Ningxia, and Xining city has increased by more than
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800 persons per km2. The weakened population density mainly occurred in Gongchang, Ganzhou,
Suzhou, and Qinyang. The population density reductions in those areas can exceed 100 persons
per km2.
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The demographic change in Gansu Province was primarily affected by the cities. Along with the
urban development, the population aggregation effect in modern cities was strengthening. The cities
especially the provincial capitals such as Lanzhou, Yinchuan, and Xining city had great attractiveness to
the surrounding population, as the cites can provide more employment opportunities. The population
was constantly floating from rural areas to the urban areas, thus the population was densely distributed
in the urban areas of those cities. The dominant reason for the population decrease in some areas was
the evolution of the structure of cities. The first reason for this may be the decline in a city’s political
level. For instance, Gongchang was the capital of a prefectural unit, namely, Gongchang Fu in Chinese,
in 1820. whereas, it was canceled and reset as a county in 1913. The second reason may be that a
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city was replaced by a new city. For instance, the capital of Heshui County, Qingyang Fu, in 1820
was replaced by the present-day capital. As a result, the population density around the old capital of
Heshui County in 2000 was lower than that in 1820. The third reason for the population decrease may
be related to military affairs. For instance, Ganzhou, and Suzhou were important military towns in
the Northwest China in the historical period; however, the military positions are largely reduced at
present. As a result, the population density in Ganzhou decreased from 41 persons per km2 in 1820 to
31 persons per km2 in 2000. In addition, affected by the climate and river change, the living condition
in some extremely arid areas of Gansu Province became worse, it might have a certain impact on the
population distribution.

To improve our understanding of the spatial variability in population density changes in Gansu
Province, we analyzed the variations in the population density for areas with altitude above sea level.
Table 1 shows that most of the population existed in the lowlands, while less of the population existed
in the highlands. The population in the area lower than 2500 m accounted for as much as 90.86% in 1820
and 85.63% in 2000. This finding illustrated that the vertical structure of the population distribution in
Gansu Province was essentially stable from 1820 to 2000. However, the population growths varied with
altitude. The total population in Gansu Province increased from 17.84 million in 1820 to 34.23 million
in 2000, 79.92% of which occurred in the regions below 2500 m and only 7.69% of which occurred in the
regions above 3000 m. The greatest increase occurred in areas between 1500 m and 2000 m. Moreover,
the weighting of the highlands increased. The population in the area above 2500 m accounted for ~9%
in 1820, and it increased to greater than 14% in 2000.

Table 1. Variation in the population density with altitude above sea level.

Altitude
(Meters)

Population in 1820
(104 Persons)

Population in 2000
(104 Persons)

Change
(104 Persons)

Proportion of
Population Growth (%)

<1500 520.11 906.74 386.63 23.60
1500–2000 684.54 1196.88 512.34 31.27
2000–2500 416.87 827.44 410.57 25.06
2500–3000 126.90 329.82 202.92 12.38
3000–3500 28.99 126.12 97.13 5.93

>3500 7.15 36.07 28.92 1.76
Total 1784.56 3423.06 1638.51 100

4. Discussion

In addition to the abovementioned comparisons between the RFRM predictions and census data,
we also compared the RFRM predictions and the 1 by 1 km resolution China gridded population
dataset (CnPop) to the township level census data for 2000, respectively. According to the previous
studies, CnPop had a higher accuracy of estimation at the township level in China than of the other
gridded population datasets, e.g., GPW and WorldPop [51]. Since the RFRM prediction and CnPop
dataset are based on grid cells and the census data were collected at the township level, we aggregated
the grid cell-based RFRM prediction and CnPop dataset into townships. Additionally, because the
census data sources were different from the data source used by the CnPop dataset, the population
proportion of each town to the prefectural unit was calculated and compared with each other.

Figure 11a,b show that both the RFRM prediction and CnPop dataset perform well at reproducing
the spatial variability in the weighted township-level population within the prefectural unit, with a
determination coefficient of 0.35. Moreover, both the CnPop dataset and RFRM prediction exhibit
random errors. However, the RMSE of RFRM predictions (0.016) is slightly lower than the RMSE
of CnPop dataset (0.028). Taken together, these findings indicate that RFRM predictions use fewer
environmental variables than the CnPop dataset does, RFRM grid cell-based predictions accurately
reproduced the spatial variability in population density, and the performance of RFRM is comparable
to the existing CnPop dataset. In addition, the population distribution of Gansu Province in 1990 and
2010 were reproduced at the gird scale, then they were aggregated into county and compared with the
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census data. Figure 11c,d show that the RFRM has a good prediction accuracy with the determination
coefficients of about 0.6. The RFRM approach is, hence, suitable for historical periods.Sustainability 2019, 11, x FOR PEER REVIEW 14 of 17 
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from the census and comparison of the RFRM grid cell-based predictions aggregated into county with
the county level census data for 1990 (c) and 2010 (d), respectively.

It is noted that some uncertainties exist in this study. Firstly, as mentioned above, the historical
population distribution was influenced by the political situation and climate change, those factors
can’t be quantified in the RFRM, so the RFRM can’t express the impacts of those factors on population
distribution. Secondly, the environmental factors of 2000 used in 1820 may be not suitable. For example,
climate moisture was used as an environmental factor. Due to the lack of precise environmental
moisture data for 1820, the present moisture spatial pattern of moisture was used in this study. However,
the climate proxy data shows that there may have been significant climate changes from 1820, which
was in the period of the Little Ice Age, to 2000 [52]. Additionally, this study used the quantitative
relations between the population density and distance to the nearest city derived from data for 2000 in
the 1820 reconstruction. In 2000, this region had an industrial and commercial society, whereas, it had
an agricultural society in 1820. Because the livelihoods are different, the importance of the city is also
different. As a result, the quantitative relations between the population density and distance to the
nearest city derived from data for 2000 would not be completely suitable for 1820. Finally, the census
data in 1820 may suffer from a distinct bias compared with it in 2000, which mainly caused by the
different statistical criteria between historical and contemporary census, it might lead to errors of
population comparison in some areas.

5. Conclusions

This paper presents an RFRM-based population gridding method that is able to reproduce the
explicit distribution of populations in historical periods. Using the RFRM, we constructed the explicit
population distributions of Gansu Province in 1820 and 2000 for 10- by 10-km grid cells. The results



Sustainability 2020, 12, 1231 14 of 16

suggest that the RFRM together with the available environmental factors, fits the census data well.
The spatial pattern of the population density of Gansu Province in 2000 kept approximately similar
with that in 1820; however, explicit differences exist. In comparison to 1820, the population density
in 2000 intensified in many cities, such as Lanzhou, Xining, Yinchuan, Baiyin, Linxia, and Tianshui,
while it weakened in other cities, such as Gongchang, Qingyang, Ganzhou, and Suzhou. The decreased
population may be mainly caused by the decline in cities’ political and military positions. Moreover,
we also found that 79.92% of the population increase from 1820 to 2000 occurred in areas lower than
2500 m. However, due to relatively high increasing rate, the population weighting of areas above
2500 m increased from ~9% in 1820 to greater than 14% in 2000.

This study presents the spatial variability in the population density changes in Gansu Province from
1820 to 2000. More importantly, it provides the community a dataset for the spatially explicit population
density of Gansu Province in 1820 and 2000. This dataset will be valuable for population-relevant
issues and studies. We found that the RFRM predictions do incur errors, which are comparable to the
error of the existing CnPop dataset. However, the RFRM predictions relied on a few environmental
factors, which is much less than required by the CnPop dataset, and RFRM is, therefore, better suitable
for historical spatially explicit reconstruction of the population.
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